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Abstract— Path tracking for Automated Guided Vehicles 

(AGVs) is a critical challenge, particularly in environments with 

multiple AGVs sharing the same pathways. This challenge 

becomes increasingly significant in traffic management systems, 

where efficient coordination and movement are essential to 

prevent congestion and ensure safety. As the world progresses 

towards various levels of automation, exemplified by automated 

delivery robots, the importance of robust AGV path-tracking 

solutions has escalated. This paper explores existing innovative 

strategies through review and then attempts to simulate how to 

mitigate the problem by integrating timed automata and sensors 

to minimize waiting times, reduce congestion, and im- prove 

urban traffic system efficiency. Simulation results in 

Coppeliasim VREP demonstrate that AGVs maintained normal 

to moderate speeds (5 to 7 units) in high-congestion scenarios, 

reduces maximum congestion 20% ensuring continuous flow 

and preventing total blockage. 

Keywords— Automated Guided Vehicles (AGVs), path 

tracking, traffic management, automated intersections, 

urban traffic control 

I. INTRODUCTION  

In today’s industrial and logistics sectors, the integration 

of automated guided vehicles (AGVs) has revolutionized 

operations by automating tasks, enhancing efficiency, and 

providing the flexibility needed to adapt to various demands. 

These vehicles have become essential tools for modernizing 

and streamlining workflows.[1] These autonomous systems 

are essential in warehouse automation, material handling, and 

manufacturing processes, significantly boosting productivity 

while reducing labor costs. AGVs are adept at performing 

various tasks, from transporting goods and raw materials to 

managing intricate workflows in dynamic environments. [2] 

Their deployment has been shown to streamline operations, 

mitigate human error, and enhance safety in industrial 

settings. Despite these advantages, path tracking remains a 

critical challenge, especially in environments with multiple 

AGVs operating concurrently [3]. Coordinating numerous 

AGVs within a shared space requires sophisticated path 

planning and traffic management strategies to ensure 

seamless and efficient operations. Without effective 

planning, issues such as path conflicts, deadlocks, and 

inefficient waiting times can arise, leading to bottlenecks and 

diminished throughput. These challenges can undermine the 

benefits of AGV systems. Navigating AGVs through 

dynamic and complex environments requires not just 

efficient routing but also advanced coordination strategies to 

ensure smooth and safe operations. As AGVs become more 

prevalent in various industries, the need for robust methods 

to optimize their movement grows. Traffic management 

plays a key role in this context, focusing on the 

synchronization of multiple AGVs to avoid conflicts and 

maintain uninterrupted workflow. Techniques such as 

scheduling algorithms, priority rules [4], and conflict 

resolution protocols [5] are critical in managing traffic flow 

and enhancing system efficiency. Effective traffic 

management reduces the risk of deadlocks—situations where 

AGVs obstruct each other’s paths—and minimizes waiting 

times, thereby improving the overall throughput of the 

system. This paper presents a novel approach to managing 

congestion at traffic intersections using timed automata, 

providing an innovative solution for controlling AGV traffic 

in complex settings. 

The subsequent sections will describe the literature 

review in section 2 and methodology in section 3 followed by 

results and discussion in section 4 including limitations. 

Finally, the paper concludes with section 5. 

II. LITERATURE REVIEW 

In the field of AGVs, significant advancements have been 

made in enhancing their efficiency and performance. [6] 

Many studies have explored the PID tuning for AGVs, 

providing insights into the simulation methods used to 

enhance their control systems. [7]. And applications which 

can be deployed in AGV are also on the rise e.g. using 

TurtleBot2i and RAZBOT AGV platforms into a 3D Unity 

environment, controlled via ROS, demonstrating accurate 

simulation and control in both environments [8], analysis of 

ammonia detection methods in agriculture [9], food-delivery 

robots [10], salient object detection and 3D object detection 

in robots [11], farming practices [12] etc. 

Moshayedi et al. [13] in their paper evaluate AGV per- 

formance by simulating and comparing four PID controller 

tuning methods (Ziegler Nichols, empirical, PSO, BAS) on 

various paths in MATLAB and CoppeliaSim, finding PSO 

performs best overall, and BAS is the fastest. In many papers, 

CoppeliaSim has been used to simulate propositions, for 
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example, to enhance Omni robot navigation accuracy and 

efficiency by analyzing performance metrics over various 

paths with SLAM. 

CoppeliaSim has been used, highlighting the need for 

optimized speed management to reduce errors and improve 

safety in diverse applications [14], [9]. Research has been 

done on other PID tuning methods as well [15]. 

In modern factories, AGV robots rely on precise 

navigation for safety, energy management, and adherence to 

predetermined paths. An effective fusion method combining 

vision (camera) and infrared (IR) sensors with minimal 

sensor usage can be employed in this scenario. Researchers 

[16] implemented this method, which was then simulated and 

evaluated using the VREP simulator and the Python API. The 

process was tested on five complex paths, demonstrating 

superior path tracking at maximum speeds compared to 

traditional vision-based methods. 

In 2021, a time automata-based reliability detection 

method was proposed to ensure the reliable operation of 

AGVs.[17] This method involves building a model during the 

design stage and using timed automata to qualitatively and 

quantitatively test the model’s reliability through iterative 

simulations. The results demonstrate the method’s 

effectiveness in calculating reliability. Yue et al. [18] 

employed a model for an improved rule-based heuristic 

algorithm, integrating Dijkstra and Q-Learning algorithms 

for optimal scheduling and path planning. Additionally, a 

new conflict avoidance strategy based on graph theory was 

introduced to reduce AGV path conflicts. Numerical 

experiments demonstrated the model and algorithm’s 

effectiveness compared to existing methods.  

In 2023, Feng et al. [19] proposed an innovative path 

planning and trajectory tracking scheme, incorporating static 

and dynamic obstacle considerations through three potential 

fields and an optimized model predictive control (MPC) cost 

function. Enhanced by a fuzzy logic system for dynamic 

weight adjustments, the scheme includes a fuzzy linear 

quadratic regulator for lateral control and a PI controller for 

longitudinal tracking, demonstrating effectiveness in multi-

scenario simulations. 

The development of intelligent logistics and multi-AGV 

(Automatic Guided Vehicle) systems has expanded the use of 

automated warehouses, yet efficient path planning remains a 

significant challenge. Researchers present an improved A-

star algorithm that incorporates current and future congestion 

costs to predict and avoid congestion in narrow lanes [20]. 

Simulation comparisons demonstrate the algorithm’s 

potential in reducing runtime conflicts and alleviating traffic 

congestion. Simge et al [21] in their paper discusses 

effectiveness of multiple AGVs picking up and delivering 

orders. It explores warehouse order picking, balancing travel 

distance, energy consumption, and investment costs. A new 

algorithm and mathematical model proposed in the paper 

efficiently reduces travel distances and improves operational 

efficiency.  

Lee et al [22] introduces a novel zone-control algorithm 

that partitions AGV guide paths into zones based on AGV 

geometry and guide path topology, effectively preventing 

collisions and deadlocks, and demonstrating 58-85% 

performance improvements in handling delivery tasks over 

state-of-the-art methods in irregular layouts. 

Wang et al. in their study enhances the BP (Back 

Propagation) network algorithm for intelligent AGVs in 

ports, developing an AGV road sign recognition and visual 

system, and demonstrates through experiments that the 

improved algorithm achieves high recognition accuracy and 

response speed, confirming its practical application value in 

complex port conditions [23]. Verma et al. [24] introduces an 

Improved Dynamic Resource Reservation (IDRR) method 

for AGV systems, which enhances time efficiency and 

ensures deadlock-free operations by utilizing dynamic 

multiple reservations of shared resource points, combined 

with conflict detection and resolution, and demonstrates its 

effectiveness in productivity, travel distance, and task 

completion time through extensive simulations. Many works 

propose using sensors to conduct path tracking and following.  

Yang et al. [25] proposes a multi-AGV tracking system 

integrating a multi-AGV scheduling system, AprilTag, 

improved YOLOv5 with oriented bounding box (OBB), 

extended Kalman filtering (EKF), and global vision to 

efficiently calculate coordinates and heading angles of AGVs 

with higher positioning accuracy and less time complexity 

than traditional methods. Sensor fusion-based works have 

also proved beneficial [26]. Researchers [27] present an 

enhanced genetic algorithm for multi-AGV path planning, 

introducing three- exchange crossover operators for better 

offspring generation and double-path constraints to minimize 

both total and individual AGV path distances. Simulation 

results confirm the algorithm’s effectiveness in reducing 

overall and longest path distances.  

Liu et al. [28] addresses the challenges of resource 

allocation, conflict, and deadlock in multi-AGV systems by 

establishing a scheduling system using a unidirectional 

directed graph and the A* algorithm for path planning. The 

system is implemented through programming and validated 

with a 20-AGV simulation, demonstrating effective conflict 

resolution, stability, and real-time performance. It offers 

significant potential for ap- plication in similar multi-AGV 

scheduling systems. Hassan et al. [29] presents a global off-

line path planning approach for Multi-Robot Systems 

(MRSs) using an energy-based Artificial Potential Field 

(APF) combined with Virtual Obstacles (VOs) to handle 

local minima. The 3D potential map generated guides robots 

from their initial positions to the goal, avoiding collisions. 

Simulations in MATLAB and V-REP demonstrate the 

effectiveness of this approach in real-time applications. 

III. METHODS 

We model multiple AGVs that follow a thick, dark, self- 

intersecting line. Each AGV is equipped with line sensors and 

ultrasound detectors to detect the line and avoid collisions 

with other AGVs. The intersections are equipped with 

sensors to detect incoming vehicles and traffic lights to signal 

those vehicles to stop or move. The entire system can be 

modeled as a hybrid timed system. 
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A. Vehicle Model 

The Pioneer 3-DX robot, used for our AGV model, is a 

small, lightweight, two-wheel differential drive robot, ideal 

for indoor labs or classrooms. The simulated vehicle model 

includes a downward-facing line sensor, typically around 20-

50 mm wide and 5-20 mm deep, mounted 5-15 mm above the 

ground for detecting lines, and a forward-facing ultrasound 

sensor [30]. However, the simulation utilizes an IR sensor as 

shown in Figure 1. [31] 

B. Path Tracking 

The line sensor is modeled as a 1x9 image sensor that 

captures a color image of the ground below. The width of the 

path is 0.05m or 5 cm. And the length of path is ~25m. The 

center of the black stripe in this image is identified, and the 

output of this method is the deviation of this center from the 

image center as shown in Figure 3. The line sensor also 

detects traffic signals on the floor.  

C. Path Following 

1) Path following Algorithm:  

The script is programmed with LUA in Coppealiasim 

VREP. [32] Algorithm 1 shows a robot in a simulation 

environment, using motors, a line sensor, and a proximity 

sensor. During initialization, it retrieves necessary object 

handles and sets initial parameters for line following and 

obstacle detection. The actuation phase adjusts motor speeds 

based on whether the robot needs to stop or avoid an obstacle, 

setting target velocities accordingly. The sensing phase 

processes image data from the line sensor to calculate line-

following errors and checks the proximity sensor for 

obstacles. 

 The parameters and their initial numerical values are as 

follows: `line_err` is set to 0, `base_spd` is 5, `obs` is 

initialized to 0, `lw` or line width is 9 cm for sensing, with 

`obs_dist` set to 10 cm and `obs_thresh` to 0.2. The `stop` 

and `go` flags are both initialized to 0. 

 

Figure 1 A: Pioneer 3-DX robot (i: Side lights, ii: IR sensor, iii: controls for power, iv: two differential drive wheels; B: Sensors on 

the Pioneer 3DX Robot 

Figure 2 Robot Line Sensor - A: (i) Top View; (ii): Bottom View; (iii): Side View; (iv): Line Sensor Settings in VREP; B: Robot 

Proximity 

Figure 3 What the Robot sees 
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The robot stops if a red line is detected and is ready to go if a 

green line is detected, with obstacle distance affecting speed 

adjustments. The cleanup phase is reserved for any required 

actions when the simulation ends. 

Algorithm 2 begins with initializing references to traffic 

lights and sensors, followed by reading sensor values to 

detect vehicle movements. The algorithm processes various  

vehicle events such as approaching, entering, and exiting the 

intersection, updating its state accordingly. It then computes 

the appropriate signal state based on real-time data, ensuring 

that traffic lights are set to red when necessary and toggling 

signal states to manage traffic flow. Finally, it sets the traffic 

light colors based on the computed signals, ensuring smooth 

and safe passage through the intersection. 

In the context of the robot's line-following logic, the variable 

lw represents a critical parameter that defines the width of the 

line the robot is expected to follow. This parameter is then 

used to compute several derived variables that are essential  

 

 

for error calculation and decision-making in the robot's 

control system. 

1. Line Width (lw) 

The variable lw is defined as a constant integer value 

representing the base width of the line in pixels as perceived 

by the vision sensor. 

2. Derived Parameters 

Several derived parameters are calculated based on lw: 

                           lw1 =
3 × lw + 1

2
                    (1)

                            lw2 =
3 × lw − 1

2
                   (2)

                  lw3 = 0.67 × 3 × lw × 255            (3)

 

• lw1: Represents the center of the line's width, scaled 

by a factor of 3/2 with a small adjustment. This value 

is used to normalize the position of the line error. 

• lw2: Represents a similarly scaled but slightly reduced 

width, used as the denominator in the normalization of 

the line error calculation. 

• lw3: Represents a threshold for the summed RGB 

values obtained from the vision sensor, scaled by a 

factor of 0.67 x 3 x lw. The factor 255 is used to scale 

Algorithm 1 Robot Control Algorithm 

1: Initialization:  

2: Set obsDist = 0.10m obsThrsh = 0.2m 

3: Retrieve motor and sensor handles 

4: Initialize variables for line following and obstacle 

detection (leftMotor, rightMotor, lineSensor, 

proximity, lineError, baseSpd, obsDist, obsThresh)  

5: Actuation: 

6: Set base speed 

7: if stop flag is set then 

8: Set base speed to 0 

9: else if obstacle detected then 

10: Adjust base speed based on obstacle distance -> 

baseSpd = baseSpd*2.5*(obsDist-obsThresh) 

11: end if 

12: Set motor speeds based on base speed and line error 

13: Sensing (Line Sensor): 

14: Retrieve and unpack image from line sensor 

15: Initialize sums and weights for line detection  

16: for each pixel group in the image do 

17: Calculate negative value based on pixel colors 

18: Update red and green sums according to Eqn. 5, 6 

19: Update weighted sums 

20: end for 

21: Calculate center of line and line error 

22: if red sum exceeds threshold, then 

23: Set stop flag 

24: else 

25: Clear stop flag 

26: end if 

27: if green sum exceeds threshold, then 

28: Set go flag 

29: else 

30: Clear go flag 

31: end if 

32: Read proximity sensor  

33: while object range < 0.50m -> object detection 

34: Continue 

Algorithm 2 Traffic Intersection Control Algorithm 

1: Initialization: 

2: Get references to traffic lights and sensors  

3: Initialize variables: xw, yw, ins, x1, y1, ss to 0 (xw, 

yx – robot counter, x1,y1 – traffic light state, ss- state 

variable for switching lights, ins – number of robot in 

the system) 

4: Sensing (Intersection): 

5: Read sensor values (xa, ya, xe, ye, xex, yex) 

(Approach, enter and exit blocks) 

6: Update previous sensor values  

7: Process Events: 

8: Approach: 

9: if vehicle starts approaching (sensor values change) 

then 

10: update xw and yw 

11: end if  

12: Enter: 

13: if vehicle enters (sensor values change) then 

14: update xw, yw, and ins  

15: end if  

16: Exit: 

17: if vehicle exits (sensor values change) then 

18: update ins 

19: end if 

20: Compute Signal STATE: 

21: if ins > 0 then 

22: set both lights to red 

23: else if both xw and yw > 0 then 

24: Toggle signal STATE ss 

25: Set light colors based on ss 

26: else if xw > 0 or yw > 0 then 

27: Set light colors accordingly 

28: end if  

29: Switch Lights: 

30: Set X light and Y light colors based on computed 

signals 
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the values to match the maximum possible RGB value 

in 8-bit color depth (since each color channel can have 

a maximum value of 255). 

3. Error Calculation (line_err) 

The error in line following, line_err, is calculated 

using the weighted sum of pixel values captured by the 

vision sensor. This error represents the deviation of the 

robot from the center of the line. 

                 cent =
∑  3×1w

𝑖=1 (𝑖 ×  neg )

1 × 10−6 + ∑  3×1w
𝑖=1 neg

     (4)

                          line_err =
 cent − lw1

lw2
           (5)

 

• cent: This is the weighted center of the line detected 

by the vision sensor, computed as a ratio of the 

weighted sum of pixel indices to the total negative 

sum (neg). A small value of 10^-6 is added to avoid 

division by zero. 

• line_err: Represents the normalized deviation of the 

line's perceived center from the robot's expected 

center (lw1). This error is then used to adjust the 

motor velocities, guiding the robot back toward the 

line's center. 

4. Stop and Go Conditions 

• The robot exceeds the sum of the red and green pixel 

values exceeds lw3. If the red sum is greater than 

lw3, the robot stops (stop = 1). If the green sum is 

greater than lw3, the robot initiates movement (go = 

1). See Equation 10 and 11 how sum of red and 

green pixel is calculated. 

 

 

2) Error Handling:  

The deviation error from the line sensor is fed into a 

Proportional-Integral-Derivative (PID) controller to generate 

a control signal. This control signal adjusts the speeds of the  

two wheels, causing the vehicle to turn and align itself with 

the line. The line error, line_err, indicates how far the robot 

is from the center of the line it should follow.  

It is calculated as Equation 6. The following equation is 

generalized from Equation 4 and 5: 

 

 

 

                 line_err =
 centroid −  midpoint 

 normalizer 
                  (6) 

                                                                                                         

 

 

where centroid is the position of the line detected by the 

sensor, midpoint is a reference value representing the center 

position, and normalizer is a factor used to scale the error.  

The speed of the robot’s motors is adjusted based on the 

line error and whether the robot should stop or avoid 

obstacles. The motor speeds are given by Equation 7 and 8: 

 leftMotorSpeed =  baseSpeed × (1 +  line_err )    (7)

 

 rightMotorSpeed =  baseSpeed × (1 −  line_err )    (8) 

 

 

where baseSpeed is the default speed of the motors and 

line_err is the calculated error from the line. 

D. Obstacle Avoidance & Traffic Detection 

The ultrasonic/radar/lidar sensor in the front of the AGV 

looks for obstacles in front of it. If an obstacle is detected, the 

AGV is put to stop a specified distance behind the obstacle. 

The following Equation 9 is followed where base speed of 

robot is adjusted based on object distance and object 

threshold 

 
𝑏𝑎𝑠𝑒𝑆𝑝𝑑 =  𝑏𝑎𝑠𝑒𝑆𝑝𝑑 ×  2.5 × (𝑜𝑏𝑠𝐷𝑖𝑠𝑡 −  𝑜𝑏𝑠𝑇ℎ𝑟𝑒𝑠ℎ)               (9)  
 
where baseSpd is the current speed of the robot’s motors, 

obsDist is the distance to the nearest obstacle detected by the 

proximity sensor, and obsThresh is the threshold distance 

below which the robot starts slowing down. 

Traffic lights are installed on the floor as coloured lights. 

The line sensor image is used to detect red/green lights on the 

floor. The vehicle keeps going if it detects a green light. The 

vehicle stops on detecting a red light. The traffic light system 

consists of 2 proximity sensors that detect incoming vehicles, 

and 2 colored stripes on the floor. 

The robot detects whether it should stop or go based on the 

colors detected by the sensor. This is done by summing the 

color values as Equation 10 and 11: 

 

red sum = ∑  

3⋅ww

𝑖=1,3

  (510 + img[𝑖] − img[𝑖 + 1] − img[𝑖 + 2])    (10) 

 green 
sum 

= ∑  

3⋅lw

𝑖=1,3

  (510 − img[𝑖] + img[𝑖 + 1] − img[𝑖 + 2])            (11) 

where red_sum represents the sum of red pixel values, and 

green_sum represents the sum of green pixel values. If  

red_sum is high, the robot stops; if green_sum is high, the 

robot continues moving. 

Figure 4 Obstacle Avoidance and Traffic Management: A: 

Robot detecting robot; B: Robot detecting Traffic line 
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As shown in Figure 4 the traffic light system consists of 2 

proximity sensors that detect incoming vehicles and 2 colored 

stripes on the floor. These stripes can change color to inform 

incoming vehicles to stop or go. In this system, it is required 

that at the same time, there should not be 2 vehicles at the 

intersection, causing a collision. Both sides should also be 

able to go in a reasonable amount of time (no starvation). 

 

IV. RESULTS & DISCUSSION 

In the context of a traffic management system, the 

following logic is implemented to optimize the flow of 

vehicles at an intersection: 

1) No Vehicles Waiting: 

• No change in the traffic light STATE is required if 

no vehicles are waiting. The traffic lights remain 

in their current configuration. 

2) One Vehicle Waiting: 

• If there is a vehicle waiting on one side, the traffic 

light on that side turns green, while the light on the 

opposite side turns red. This ensures that the 

waiting vehicle can proceed without unnecessary 

delay. 

3) Vehicles Waiting on Both Sides: 

• When vehicles are waiting on both sides, the 

system randomly selects one side to turn green, 

and the other side turns red. This approach 

prevents starvation, ensuring that neither side is 

perpetually waiting while the other side 

continuously receives the green light. 

•  

However, the system can cause the traffic lights to “chatter,” 

meaning they switch STATEs frequently when vehicles are 

present on both sides. To mitigate this issue, a timed 

automaton is introduced. The timed automaton enforces a 

fixed interval during which the traffic lights remain in their 

current STATE before any changes are made. This approach 

prevents rapid oscillation of the traffic lights, promoting a 

smoother and more predictable flow of traffic. 

 

As shown in Figure 5A, the model avoids congestion using 

sensors using intelligent scheduling. It showcases the E1 

scenario where there is only one sensor block before the 

intersection i.e. the entrance block. By implementing a timed 

automaton, the traffic management system achieves a balance 

between responsiveness to vehicle presence and stability in 

traffic light operation, thereby enhancing overall traffic 

efficiency and reducing potential congestion at the 

intersection. 

As shown in Figure 5B, there is an entrance block to check 

robots coming in the intersection, an approach block to sense 

they are approaching and an exit block to indicate the robots 

are exiting the system. 

A. Results 

The path chosen for the simulation was a spiral in nature, and 

the total number of AGVs was 12, split evenly with 6 on each 

side of the spiral pathway. The simulation was conducted in 

two distinct scenarios, as illustrated in Figure 5 and Figure 6. 

1) Test Scene E1 – Single Entrance at Intersection 

In the first scenario (E1), the simulation incorporated an 

entrance block designed to detect vehicles entering the spiral 

pathway. The purpose of this setup was to observe how 

AGVs manage congestion with a single detection point. 

Figure 6 (Blue) presents the simulation results for this case, 

highlighting the relationship between vehicle speed and 

congestion at the intersection.  

 

 
Figure 6 AGVs simulation results - Blue E1 - Entrance Block only 

scene; Red E2 - Entrance, Approach, Exit Block scene 

Figure 5 Robot simulation demo in Coppeliasim VREP: A - E1 - Entrance Block only; B - E2 - Entrance, Approach, Exit Block 
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2)  Test Scene E2 – Entrance, Approach and Exit block at 

Intersection 

In the second scenario (E2), the simulation was expanded to 

include an entrance block, an approach block, and an exit 

block. This setup provided a more complex traffic 

management system, aiming to evaluate how additional 

detection points influence traffic flow and congestion 

dynamics. Figure 6 (Red) illustrates the results for this case, 

offering a comparative analysis against the E1 scenario. The 

presence of additional blocks allowed for a more 

comprehensive understanding of congestion behavior as 

vehicles moved through the spiral pathway.  

 

3) Analysis of Simulation Results 

 

Table I complements the graphical data by detailing 

congestion levels associated with different vehicle speeds, 

ranging from 1 to 10 units or 0 to 97 cm/s. In both scenarios, 

the speeds on the left side of the spiral increased 

incrementally with each test, while the speeds on the right 

side remained constant at 48 cm/s.  The logic to calculate the 

speed of the object in the simulation is straightforward and 

involves a few key steps. First, the current position of the 

object is obtained using `sim.getObjectPosition`, which 

returns the coordinates (x, y, z) in the simulation space. The 

time at which this position is recorded is also captured using 

`sim.getSimulationTime`.  

 

To calculate the speed, the difference in position between the 

current and the previous frame is computed for each 

coordinate axis (x, y, and z). This difference represents the 

displacement in each direction. The total distance traveled by 

the object is then calculated using the Euclidean distance 

formula in Equation 12:  

 

distance = √(𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2                     (12) 

 

where `dx`, `dy`, and `dz` are the differences in the x, y, and 

z coordinates, respectively. 

 

The time difference (`dt`) between the current and previous 

frames is calculated, and the speed is then derived by dividing 

the distance by the time difference. The speed is expressed in 

centimeters per second (cm/s). Finally, the previous position 

and time are updated to the current values to be used in the 

next iteration of the loop, allowing for continuous speed 

calculation. The calculated speed can be printed or stored for 

further analysis or debugging purposes. Notable observations 

include higher congestion at lower speeds and a significant 

increase in congestion with higher speeds, particularly in the 

entrance block (E1). 

 

 Congestion was high at slower speeds but reduced as the 

motor speed increased to around 48–68 cm/s. However, when 

the speeds increased further, up to 97 cm/s, while keeping the 

right spiral's speed constant, the congestion also increased. 

 

 

 

 

 

 
Table 1 Simulation results of robot speed vs congestion. E1 - 

Entrance Block only scene; E2 - Entrance, Approach, Exit Block 

scene 

Robot Speed 

(cm/s) 

Max 

Congestion 

Remarks 

Left 

Circle 

Right 

Circle 

E1 E2 Speed Congestion 

0 48 12 12 None Block 

9    48 10 8 Slow High 

19 48 8 7 Slow High 

29 48 7 7 Moderate Medium 

38 48 6 6 Moderate Medium 

48 48 5 6 Normal Medium 

58 48 6 6 Normal Medium 

68 48 7 NA Above 

average 

Rising 

77 48 7 NA Increasing E1 

increasing, 

E2 Fails 

87 48 8 NA High E1 

increasing, 

E2 Fails 

97 48 8 NA High E1 

increasing, 

E2 Fails 

 

However, the same cannot be said for E2 as at high speeds 

the system fails even though it has 3 sensor blocks. The 

reason for this is robots with high speed have a harder time 

halting speed at each sensor block. This indicates that 

maintaining a moderate and constant speed limit around 

intersections is crucial for optimal traffic flow. 

B. Limitations 

Estimating when a vehicle has entered and/or exited the 

intersection is challenging due to the non-zero length of 

vehicles, which cannot be treated as points. This complexity 

is further compounded by the difficulty in identifying the 

number and types of sensors required for accurate detection 

and management. Additionally, it has not been formally 

proven that the proposed system avoids crashes, indicating 

potential safety concerns that need to be addressed. 

V. CONCLUSIONS 

This paper addresses the critical challenge of path tracking 

and traffic management for AGVs in complex urban 

environments. The proposed approach integrates advanced 

control mechanisms and sensors to mitigate congestion and 

enhance operational efficiency at traffic control intersections. 

Simulation results in Coppeliasim VREP demonstrate that 

AGVs maintained normal to moderate speeds in high 

congestion scenarios, reduces maximum congestion 20% 

ensuring continuous flow. By leveraging IR-based sensors 

and a novel path-tracking technique, the system aims to 

reduce waiting times, avoid collisions, and optimize the flow 

of AGVs. 

The simulation results demonstrate the effectiveness of the 

proposed method in managing vehicle traffic at intersections, 
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as shown in the Coppeliasim VREP environment. The timed 

automaton approach successfully minimizes traffic light 

oscillation, ensuring a more stable and predictable flow of 

vehicles. This approach helps balance responsiveness to 

vehicle presence with the need for stable traffic light 

operation, thus enhancing overall system efficiency. 

However, there are limitations to the current system. 

Challenges remain in accurately estimating vehicle entry and 

exit times at intersections, especially given the nonzero 

length of vehicles. In high-speed scenarios congestion 

increases. Additionally, while the system is designed to 

reduce collisions and manage traffic flow effectively, formal 

proof of crash avoidance is still required to address potential 

safety concerns. 

Future work should focus on refining sensor accuracy, 

improving the robustness of the traffic management 

algorithms, and validating the system’s safety through 

extensive testing and formal proofs. Overall, the proposed 

system provides a promising solution for managing AGV 

traffic in urban environments, contributing to the 

advancement of autonomous vehicle technology and its 

application in smart transportation systems. 
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